Performance studies of the StoRM Storage Resource Manager

A. Carbone', L. dell’ Agnello', A. Fortif, A. Ghisellif, E. Lanciottit, L. Magnoni’, M. Mazzucato',

R. Santinellif, V. Sapunenko', V. Vagnoni® and R. Zappi'

t INFN CNAE, viale Berti-Pichat 6/2, 1-40127 Bologna, Italy
Y CERN, European Organization for Nuclear Research, CH-1211, Geneve, Switzerland
§ INFN Sezione di Bologna, via Irnerio 46, I-40126 Bologna, Italy

Abstract

High performance disk-storage solutions based on par-
allel file systems are becoming increasingly important to
Sulfill the large I/O throughput required by High-Energy
Physics applications. Storage Area Networks (SAN) are
commonly employed at the Large Hadron Collider data
centres, and SAN-oriented parallel file systems such as
GPFS and Lustre provide high scalability and availability
by aggregating many data volumes served by multiple disk-
servers into a single POSIX file system hierarchy. Since
these file systems do not come with a Storage Resource
Manager (SRM) interface, necessary to access and manage
the data volumes in a Grid environment, a specific project
called StoRM has been developed for providing them with
the necessary SRM capabilities. In this paper we describe
the deployment of a StoRM instance, configured to manage
a GPFS file system. A software suite has been realized in
order to perform stress tests of functionality and throughput
on StoRM. We present the results of these tests.

1 Introduction

Dependable high throughput data services for storage
and file access are the heart of Grid computing, in partic-
ular for the High-Energy Physics (HEP) community facing
the challenges of the new scientific program starting at the
Large Hadron Collider (LHC) [10]. In particular, the I/O
load and the large data size produced by the LHC experi-
ments, amounting to several PB/year, together with the need
to exchange data with CERN and with all the other comput-
ing centres around the world at a steady rate of several Gb/s,
pose very stringent requirements for all the data centres in-
volved.

The data management is a fundamental task requiring
a coordinated effort, and is realized through common tools

and protocols allowing to start, control and end the transfers
between the different Storage Elements (SE) at the different
sites. The SEs must be fully manageable from remote users,
such as experiment production managers, in order to per-
form all the basic operations such as space management and
data access. In addition, the data stored on the SEs must be
protected against unauthorized access, and the access rules
have to be defined as required by the experiments.

One of the main goals of the Grid consists in providing a
way to share geographically distributed heterogeneous stor-
age resources, with an effective and common interface to
users, regardless of the type of the back-end system being
used. In a data Grid, in which more emphasis is given on
data intensive applications that produce and read large vol-
umes of data, the need to provide an efficient management
of the storage resources becomes mandatory.

Given the above requirements, the HEP Grid community
has adopted and implemented the Storage Resource Man-
ager (SRM) interface [15, 27], allowing for a fully trans-
parent management and access to underlying storage re-
sources, hiding the details of the back-end implementation
to the user applications. The Grid Storage Resource Man-
ager (StoRM) [24, 17] has been developed with the spe-
cific aim of providing parallel file systems like GPFS [6, 26]
and Lustre [12, 20], but also standard POSIX file systems,
through a SRM interface.

In this paper we present the results of a series of tests per-
formed on the StoRM SRM implementation at CNAF !, i.e.
the central computing facility of the Italian National Insti-
tute for Nuclear Physics (INFN). Some basics of the SRM
specifications will be introduced, also briefly mentioning
the SRM implementations presently available. Later, some
details on the StoRM architecture and its main features will
be given. Then, after having introduced the StoRM test-bed
put in place for this study, the tests performed and the rele-

ICNAF, Centro Nazionale per la Ricerca e Sviluppo nelle Tecnologie
Informatiche e Telematiche, http://www.cnaf.infn.it.

vant results obtained will be described.

2 Storage resource management

A storage service interface must be flexible enough to be
used to access storage systems based on different storage
technologies. At the same time, its usage should be sim-
ple enough so that clients do not need to have any knowl-
edge of the underlying storage back-end. This is the main
goal of the SRM interface, i.e. a middleware service aim-
ing to provide the dynamic management of a storage re-
source engaged in a distributed computing system. A de-
tailed description of SRM and its specifications is given in
references [15, 16].

SRM allows to access a file-based storage system. Files
are addressed as site URL (SURL) i.e. logical entities pro-
viding an abstraction of the file name-space, and as transfer
URL (TURL) i.e. physical data items.

The SRM can have the files stored in several physical
locations, or can bring them from tape to disk for direct ac-
cess by a client. Once the file is available for I/O, a TURL is
returned for a temporary access to the file controlled by the
pinning lifetime. A similar capability exists when a client
wishes to put a new file into the SRM.

To access a file through a SRM service, a SURL is pro-
vided as a parameter embedded in the specific SRM re-
quest, such as the srmPrepareToPut method for prepar-
ing the SRM to accept new data and the srmPrepareTo-
Get method to get read access to the wished data resource.
The SRM interface provides two classes of methods: asyn-
chronous and synchronous ones. Asynchronous methods
return a token corresponding to the request, and the corre-
sponding action is performed by the SRM asynchronously.
The client can retrieve at any time the status of the request
by addressing it through such a token. This is the case for
data access functionalities. Synchronous requests return at
completion giving back the control to the client (blocking
calls). This is the case of directory and file management
(e.g. srmLs, srmMkdir, srmRm and srmRmdir) and space
management functions (e.g. srmReserveSpace).

2.1 SRM implementations

In this section a brief overview of the most widely used
SRM implementations is given.

The Berkeley Storage Manager (BeStMan) [1] is a Java-
based SRM implementation from LBNL 2. It has a modular
design and it is currently used for managing disk-servers
and the HPSS Mass Storage System (MSS) [8].

The CERN Advanced Storage System (CASTOR) [2] is
designed to work with a tape back-end to provide efficient

2LBNL, Lawrence Berkeley National Laboratory, http://www.
1bl.gov.

data transfer to tape and reliable data access to the front-end
disk cache.

The dCache [25] system is again a Java-based SRM and
can be used as pure disk SE or can be interfaced to a MSS
to be used in conjunction with tapes. It is realized by a
collaboration between FNAL 3 and DESY *, and it is char-
acterized by a highly scalable architecture.

The Disk Pool Manager (DPM) [4] project, developed at
CERN, is designed to manage a disk-storage system. It has
a dedicated daemon to provide the SRM interface.

Finally, the StoRM project has been developed by a col-
laboration between INFN and the Abdus Salam ICTP insti-
tute in Trieste, the latter operating in the framework of the
EGRID [19] project. The main idea behind StoRM con-
sists in decoupling the file system from the SRM service,
in the sense that the data-access functionality can be pro-
vided by any POSIX file system, while StoRM specifically
provides just the SRM functionality. In the case that any
advanced functionality peculiar to a given file system were
available via specific APIs, they could be included into a
StoRM driver bound to the file system and plugged in into
StoRM.

StoRM can be easily configured to run on the GPFS [6,
26] or Lustre [12, 20] parallel file systems, which provide
high-performance POSIX access to the data and are widely
employed commercial products.

In the following section we will give a more extended
description of the StoRM architecture.

3 The StoRM Storage Resource Manager

StoRM [24, 17]is an implementation for disk-based stor-
age of the version 2.2 of the SRM interface especially de-
signed to satisfy the requirements coming from the HEP ex-
periments .

The main idea behind StoRM is to provide a SRM access
to high performance parallel file systems in a Grid environ-
ment. It provides users and applications with the standard
SRM functionality combined with the capability to perform
secure and local access to the shared storage resources (e.g.
through GPFS).

StoRM provides the advanced SRM functionalities to
dynamically manage space and files according to the user
requirements, to specify the desired lifetime and to allow
for advance space reservation and a different quality of ser-
vice provided by the underlying storage system. Since it
generalizes the file system access to the Grid, StoRM also
takes advantage from the file system security mechanisms
to ensure an authenticated and authorized access to the data.

3ENAL, Fermi National Accelerator Laboratory, http://www.
fnal.gov.

4DESY, Deutsches Elektronen-Synchrotron, http://www.desy.
de.

(SRM Client)

GSl over HTTP
s T ™)

P
StoRM J

FrontEnd

Request
DataBase|

StoRM
BackEnd

GPFS POSIX
driver driver
\
/ \ J

e ——

GPFS :

posix FS

Figure 1. Schematic representation of the StoRM archi-
tecture.

StoRM provides a layered and flexible security framework
to satisfy the requirements coming from the different sce-
narios involved. User authorization is based on certificates,
authorization decisions can be performed interacting with
different external Grid services and, to provide a local se-
cure access to data, POSIX ACLs are enforced on the de-
sired files and directories.

3.1 StoRM architecture and features

StoRM has a multi-layer architecture made by two main
components: the front-end (written in C/C++), and the
back-end (written in Java), with a database system used to
store SRM requests and the StoRM metadata. The front-end
exposes the SRM web service interface, manages user au-
thentication and stores the data of the SRM requests into the
database. The back-end is the core of the StoRM service;
it executes all synchronous and asynchronous SRM func-
tionalities. It takes care of file and space metadata manage-
ment, enforces authorization permissions on files and inter-
acts with external Grid services. Support for the different
file systems is provided in StoRM by a driver mechanism.
The back-end logic is decoupled from this wrapper compo-
nent and the specific driver can take advantage from propri-
etary functionalities provided by certain file systems (e.g.
block preallocation in GPFS). A sketch of the architecture
is shown in Fig. 1.

The driver implements a common internal interface for

the underlying file system in use, allowing a StoRM in-
stance to work on different file systems at the same time.
This solution provides a Grid site with the capability of
using different services for different functionalities at the
same time, i.e. StoRM exposes the SRM functionalities,
and different storage systems for managing and aggregating
the storage resources, such as GPFS [6], Lustre [12] or XFS
[18] can be used. At present there are two specific drivers
for the GPFS and XFS file systems, that rely on proprietary
APIs for the management of advanced functionalities, and
in addition a generic POSIX driver which works for every
file system with POSIX semantics, such as Lustre or others.

An important feature for a SRM service is the naming
capability. In a Grid environment it allows users to refer to
specific data resources in a physical storage system using
a high level logical identifier (SURL). This logical identi-
fier is typically defined with a file system like structure (a
hierarchical tree of names) independently on the physical
location of data on the real storage. According to the main
idea, StoRM has a name-space mechanism that relies on the
underlying storage system structure to create the space of
file names. It is based on a XML document that represents
the different storage components managed by the service,
the storage areas defined by the site administrator, the qual-
ity of service they provide and the VO that wants to use
the storage area. An appropriate directory tree is realized
in each storage component reflecting the XML schema. In
this scenario, StoRM is able to identify the physical loca-
tion of a requested data evaluating the logical identifier and
the specified attributes following the XML schema, without
querying any database service.

SRM services have to support the Grid security at dif-
ferent levels, from the user authentication and authorization
to the permission enforcement on files and directories for
the data access. StoRM provides a layered and flexible se-
curity framework, built to satisfy the requirements coming
from heterogeneous scenarios, as the case of HEP and the
more security demanding financial Grid use cases. The au-
thorization is based on X.509 certificates and it supports the
groups and roles attributes as defined by the VOMS service
[22]. To verify if a user is authorized to perform a certain
operation on the data, StoRM is able to interact with exter-
nal authorization services (so-called authorization sources).
Authorization sources contain information on users permis-
sions and can be local or global. The former are based on
local configuration (e.g. XML files containing regular ex-
pressions of path and user credentials), the latter are exter-
nal services, such as file catalogs (e.g. the LCG File Catalog
[9]) or dedicated policy decision services (e.g. the G-PBox
service [23]). To provide a secure and local access to the
data, StoRM relies on the security mechanisms provided by
the underlying file system in order to enforce permissions.
When an authorized user requests to access a certain file

StoRM enforces an appropriate ACL on the physical file
and directories with the local identity corresponding to the
(mapped) user credential. With this solution a direct local
access can be performed complying with all Grid security
layers.

Together with StoRM, a command line client tool for the
SRM version 2.2 interface has been realized, and we have
extensively used it for the tests described in the following
sections of this paper. It provides the capability to inter-
act with a generic SRM version 2.2 service - i.e. it is not
specific to the StoRM service - using the standard UNIX
command style for options, help and command output. It
supports all the SRM version 2.2 functionalities.

3.2 StoRM clusterization

In order to satisfy the high availability and scalability re-
quirements coming from the HEP community, StoRM can
be deployed in a clustered configuration, with multiple in-
stances of front-end and back-end services and with a dedi-
cated DBMS installation. The communication between the
different services takes place using the database to store
SRM request data and a direct RPC connection. For the
load balancing a simple dynamic DNS configuration can
be used. Additional new front-end services can be easily
added on-the-fly to improve the rate of requests managed
by the system, while new back-ends can be added to work
on the same database to improve the global processing time
of the SRM requests. The DBMS (currently only MySQL
is supported, but the porting to Oracle is foreseen) can be
deployed in a dedicated single or clustered configuration,
completely independent on the other StoRM services.

4 Test-bed layout

Our setup was composed by 4 disk-servers integrated
into the CNAF SAN via FC links, while the communication
of the disk-servers with the computing farm was via Gigabit
LAN. As disk-storage hardware we used part of one EMC
CX3-80 SAN system for a total of 40 TB of raw-disk space
arranged in RAID-5 arrays. The disk arrays were aggre-
gated on the 4 disk-servers by GPFS, version 3.1.0-10, i.e.
the disk-servers actually acted as GPFS servers, serving a
net 36 TB GPFS file system to the worker nodes.

GPEFS is a high-performance shared-disk cluster file sys-
tem developed by IBM. GPFS distinguishes itself from
other cluster file systems by providing concurrent high-
speed file access to applications executing on multiple
nodes. With GPFS, a single file system containing several
PBs of data can be built on dedicated hardware in a SAN
configuration. In a large farm it is not feasible to connect
each worker node in the GPFS cluster directly to the SAN
via FC. For this reason GPFS, making use of a capability

GridFTP Giient
DNS Load ,L
Balancing

storm-fe storm-

~J gridftpd
S

! StoRM I
[FrontEnd 1

. ! StoRM I L
N FrontEnd || |
diskserv-san-81
)

- J
diskserv-san-82
)

StoRM E X
Request [
BackEnd DataBase|

diskserv-san-83
~—

GPFS driver

storm01

SRM Access
Setting ACL

Directory functions

Data Transfer -
4 Gb/sec —‘

40 TB
GPFS v3.1

Figure 2. Sketch of the StoRM/GPFS test-bed layout.

called NSD (Network Shared Disk), provides a sort of soft-
ware simulation of the SAN via Gigabit network.

The EMC system comprised two storage processors
(with 4 GB of RAM each), connected to a Brocade 48000
Fibre Channel fabric director. The 4 disk-servers were
equipped with dual Intel Xeon 1.6 GHz processors, 4 GB of
RAM, dual-port Qlogic 246x Host Bus Adapter (HBA) and
1 Gigabit Ethernet link. Hence the total theoretical band-
width available was 4 Gb/s. The disk-servers also acted as
GridFTP [7] front-ends, i.e. besides the GPFS services they
run also the GridFTP daemon. As Operating System (OS)
we used a Scientific Linux CERN (SLC) [14] version 4.4,
with a 2.6.9-42.0.8.EL.cernsmp kernel operating at 64 bits.

The StoRM service was provided by three machines:
two machines running the StoRM front-end, balanced by
means of a dynamic DNS, and one machine running the
StoRM back-end and the MySQL database engine. The two
front-end servers were equipped with dual AMD Opteron
2.2 GHz processors, 4 GB of RAM and Gigabit NIC. The
back-end machine was a dual Intel Xeon 2.4 GHz, with 2
GB of RAM and Gigabit NIC.

A sketch of the test-bed layout is given in Fig. 2.

S Tests and results
5.1 Realistic data transfers and analysis

Tests to understand how StoRM behaves under real op-
erative conditions have been carried out. Aim of these tests

was proving whether StoRM copes with the use cases pro-
vided by a HEP experiment like LHCb [11]. According to
the LHCb Computing Model [21] the disk-only based stor-
age (TOD1) Service Class at each Tier-1 centre is used for
data analysis and raw data reprocessing. The aggregated
LHCb data flow from all the other Tier-1 centres and the
CERN Tier-0 centre to the CNAF disk SE is estimated to
be about 30 MB/s of steady traffic. However spikes on the
consumed bandwidth should be also envisaged, as previous
LHCb Data Challenge activities have proven so far.

The first test consisted of “real” data transfers from all
the existing SRM version 1 LHCb production end-points
to our StoRM end-point, by means of tools currently used
in the daily operation within the LHCb Collaboration. The
test has been running during 14 consecutive hours, with a
steady throughput of about 150 MB/s without problems.
The failure rate due to StoRM itself (TURL not returned,
SRM requests not fully honored) was completely negligi-
ble, being the StoRM service not really overloaded for such
a use case. The rate of problems in copying data via the 4
GridFTP daemons composing the StoRM instance was as
well insignificant. A failure rate from 1% to 5% (depending
on the source) has globally been observed. This is mainly
due to timeouts in retrieving the TURL at the source.

A second test has been conceived to access data by
means of a realistic LHCb analysis application, namely
DaVinci [3], which internally makes use of ROOT [13] to
access the data files. This test consisted in running simulta-
neously a certain number of analysis applications each one
accessing several files stored in StoRM.

While this test might comfortably reflect the real situa-
tion of a Tier-1 as soon as the number of concurrent jobs
gets close to the number of CPU slots currently available at
CNAF, unfortunately we could not reserve for our tests the
entire farm, since heavy production activities were going on
at the same time, by LHCb and other VOs hosted at CNAF.
However, it was possible to run about 200 DaVinci analy-
sis jobs simultaneously, each one accessing 10 input files
from the StoRM system. A few failures were observed due
to misconfigurations of the used Worker Nodes, but no fail-
ures in the data access operations nor in issuing the SRM
requests occurred for the rest of the correctly configured
Worker Nodes. Despite the limited number of available
CPU slots for this test, the successful simultaneous access
to order of 2000 files through StoRM from 200 nodes is a
promising result for the feasibility of a real data analysis ac-
tivity. The same kind of test, but for a 24 hours period, is
foreseen in the ongoing SRM testing activity of LHCb.

5.2 Throughput tests

A specific data transfer test has been performed to under-
stand how StoRM reacts in heavy-duty operation conditions

and to probe the limits of this particular instance. The core
of the test consisted of client scripts which used low level
tools (globus-url-copy [5]) for transferring data from LHCb
dedicated disk pools at CERN (different source TURLSs cor-
responding to real LHCb data produced by simulations) to
always different destination files in StoRM. In this test we
had not the possibility to control possible bottlenecks intro-
duced by the source disk-servers at CERN, since irregular
activities by LHCb were potentially running in parallel on
the same sources. At the destination side, for each incoming
file, the script issued a srmPrepareToPut SRM command, a
polling requesting the status to the SRM until the TURL
was returned, then it performed the data transfer and, once
the transfer was complete, it issued a srmPutStatusDone
SRM request to StoRM. This means that the full transfer
chain was de facto emulated at the destination side and the
usage of TURLSs at the source could not alter the study of
the behavior of the destination, i.e. StoRM.

The preliminary part of the test was dedicated to look for
the best combination of the number of parallel streams for
each data transfer and the number of concurrent data trans-
fers, in order to optimize the throughput. The maximum
throughput was reached with 15 parallel streams per trans-
fer and 120 concurrent data transfers. The size of the files
was O(100) MB. With this configuration we run a 14 hours
test observing a sustained rate slightly exceeding 350 MB/s
for about 8 hours, with a peak at 370 MB/s.

Netvork utilization - last day :

A N

L

12100 18100 00: 00
W eth1 din aver: 237.068M max: 372.53W min: 0.06M curr: 011
W ethi out aver: E.E3M max: 9.76M min: 0,988 curr: 1. 91

400 M

300

BYLesAs

200 M|

100 M it

P

Figure 3. Aggregated network throughput measured dur-
ing the data transfer test.

Fig. 3 shows the aggregated network throughput versus
time during the test. The bandwidth started degrading after
6 hours because the workstation at CERN used to run the
client script got overloaded and the available memory was
exhausted. In 14 hours about 17 TB of data were moved
from CERN to CNAF, interacting with the StoRM SRM in-
terface about 400k times, with more than 100k files trans-
ferred. The GPFS disk-servers began suffering this large
traffic: non negligible I/O Wait CPU load was observed on
the disk-servers during the tests (but in parallel to our tests
some additional activities from other VOs were using the
same disk back-end storage).

Since the GridFTP servers were running on the 4 GPFS
disk-servers, each one provided with a Gigabit network in-

terface, the total available network bandwidth was about
500 MB/s. The link from CERN to CNAF was not at all
a limiting factor, since it actually had a bandwidth of 10
Gb/s. In conclusion we have been able to consume about
70% of the theoretical network bandwidth.

The observed percentage of failures has been very low,
about 0.3% due to the file transfers themselves (i.e. non-
zero error code got from globus-url-copy), and 0.1% due to
StoRM. The failures during the data transfers can have sev-
eral possible explanations, e.g. problems due to high load
on the source disk-servers or temporary network glitches.
The few failures due StoRM were basically due to timeouts
and will be discussed in the following section.

5.3 StoRM stress tests

A series of stress tests without data transfers, i.e. only
measuring the pure SRM performances, were also put in
place to understand how the implementation of StoRM re-
sponds when critical conditions are reached. These tests
provided an evaluation of the performance of this StoRM
implementation and recipes for scaling up installations
which would require larger performances.

It is worth noting that the results of these tests do not de-
pend on the performance of the underlying GPFS file sys-
tem, hence all the latencies we will mention have to be ad-
dressed to the StoRM instance itself. The test turned into an
invaluable opportunity for tuning and knowing the behav-
ior of StoRM in a tight collaboration with its developers,
and led to a series of optimizations, in particular to the in-
troduction of several indices into the StoRM database for
improving the response of the relevant SQL queries.

A first step targeted to find the limits of the system,
by gradually increasing the load on the SRM endpoint and
studying the response as a function of the number of con-
current processes. Each process issues a sequence of SRM
requests to list the content of a directory (srmLs), to re-
move the files in it (srmRm), and then to allocate space for
a new file (srmPrepareToPut). The plot in Fig. 4 (upper
part) shows how the average time for retrieving a TURL
from StoRM varies as function of the number of concurrent
processes. The average time was computed as the mean
value of all processes mean times and the error bars rep-
resent a systematic uncertainty computed by repeating the
test several times. Fig. 4 also shows (bottom part) the per-
centage of failures due to StoRM, which is negligible up
to 500 concurrent requests, while it increases considerably
from 600 parallel processes onward. This behavior suggests
that the system can safely handle up to ~ 500 parallel re-
quests, corresponding to a rate of SRM client commands of
about 80 Hz>, whereas for ~ 600 parallel processes it effec-

SEach prepare to put sequence implies on average 6.5 client commands
(1 srmPrepareToPut + 5.5 srmStatusPtP), thus the rate can be roughly

[Time per Request vs Parallel Requests |

50

40 <

—

Mean Time per Request (s)

30

e

20

I I . I
Number of Parallel Requests

[Failed Requests vs Number of Parallel Requests |

Failed requests (%)
-
o

400 500 600
Number of Parallel Requests

Figure 4. Upper plot: mean time required to fulfill a srm-
PrepareToPut request versus the number of parallel client
processes. Lower plot: percentage of failed requests versus
number of parallel client processes.

tively enters into a critical regime. This was basically due
to the pretty high load which was reached on the StoRM
front-end service nodes, which could no longer process in
due time the requests, resulting in hard timeouts with an er-
ror message from gSOAP: "CGSI-gSOAP: could not open
connection! TCP connect failed in tcp_connect()”. In fact,
it indicates that the StoRM front-end, which is in charge of
accepting and authenticating the incoming requests through
the gSOAP package, was not able within a given timeout to
serve the SRM request due to the large load. Of course in
such cases the client code could perform one or more retries,
thus reducing the effective rate of failures. The obvious so-
lution to this kind of problems would be to scale up the
system in order to cope with a rate of requests higher than
the expected use case. However, such a predictable failure
condition should be taken into account with an appropriate
admission control queue in StoRM, in order to reject the re-
quests that cannot be fulfilled under heavy load conditions.
The StoRM developers are already working to implement
a configurable timeout by-passing the gSOAP one, and to
return an ordinary SRM message which states that the ap-

computed as (6.5 x 500 requests)/40s ~ 80H z. This is an upper limit
of the frequency, since the 500 processes are not always active all at the
same time.

plication rejected the request due to the high load.

The second part of the test was aimed to investigate the
failures of each SRM functionality individually. It con-
sisted in running different requests (srmLs, srmMkdir, srm-
Rmdir, srmRm, srmPrepareToPut, srmPrepareToGet) while
the system was kept in a critical status by a parallel stress
test launched from different client machines. By splitting
the test over multiple client nodes we avoided the results of
the test to be affected by the high load of one single client
machine. In Tab. 1 we summarize the percentage of fail-
ures found for this particular setup®. Synchronous opera-
tions like srmLs, srmMkdir, srmRmdir, and srmRm suffered
the load of the service more than the asynchronous ones like
srmPrepareToPut.

Functionality Mean time Rate of
per request (s) | failed requests (%)
srmMkdir 70 + 20 6+3
srmLs 30£3 4+£2
srmRmdir 30+ 3 4+1
srmRm 30+ 2 3+1
srmPrepareToPut 85+ 15 05+£05
srmPrepareToGet 57T+7 1+£1

Table 1. Results of dedicated stress tests on different SRM
functionalities. In the second column the mean time to exe-
cute the command is reported, while in the third column the
average rate of request failures. The errors are estimations
of the systematic uncertainties obtained running the same
test under the same conditions several times. These mea-
surements were done while running in parallel other tests in
order to keep the system under very high load. See the text
for the proper interpretation of these numbers.

During the first phase of the tests we observed also an-
other occasional error message due to failed XML-RPC ex-
ecutions. Thanks to our tests this problem has been discov-
ered and fixed by the developers, by increasing the num-
ber of XML-RPC channels accordingly with the number of
threads configured in the StoRM front-end.

In order to compare these results with a real use case,
a rough estimation of the needs of LHCb has been done
on the basis of the LHCb Computing Model [21]. The ex-
pected rate of calls to the SRM interface in a Tier-1 site dur-
ing the first year of LHC data taking is estimated to be of
order of 1 Hz. This computation includes the data transfer
from CERN to the Tier-1s during the data taking, the data
exchange amongst the Tier-1s and from the Tier-2s as well

These numbers strongly depend on both the hardware setup of the
instance and on the overall load of the system that we have appropriately
put in place. Hence, they are not intended as a general estimation of the
StoRM performance, but rather as a study of the response of the system to
individual SRM operations while it is kept highly loaded.

as data analysis activities going on at the Tier-1. The results
reported above prove that the instance of StoRM used for
these tests can comfortably cope with the needs of a HEP
experiment such as LHCb.

5.4 File removal

Another interesting measurement consisted in deleting a
large amount of data by issuing a series of srmRmdir re-
quests. The effectiveness of this functionality is extremely
important for the LHC VOs and production managers, since
it would allow to handle a remote storage for freeing wasted
space or removing old data without the need to interact
directly with the system administrator of the remote site,
hence speeding up considerably the whole process.

For these test we have spread 17 TB of data over 50 di-
rectories, and then simply issued 50 recursive srmRmdir re-
quests for deleting the entire data-set. Fig. 5 shows the
GPEFS file system occupancy versus time. As it can be seen
in the plot, about 1300 seconds were required to complete
the removal of these 17 TB of data.

E x 10 ;
1800 E
1600 ;
1400 —
1200 —
1000 —
800 —
600 ;
400 —

200 [

t I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600
R

Figure 5. Occupancy of the GPFS file system as a func-
tion of time during the file removal test. The test started at
about t=400 s, and was over at t=1700 s. The step behav-
ior clearly visible in the plot is due to the time that GPFS
needs to update its metadata information to the clients, and
roughly corresponds to a few tens of seconds.

6 Conclusions

The main concepts of the StoRM implementation of
SRM have been presented. An instance of StoRM has been
deployed at the CNAF Tier-1 facility for test and optimiza-
tion purposes. This StoRM instance has undergone a series
of tests aiming to measure the throughput in data transfers,
the capability in file access for analysis activity, to study
the behavior of the system under high load, as well as to
optimize the StoRM implementation itself.

The results show that the instance of StoRM has been
able to sustain for several hours an incoming throughput
over the WAN of about 360 MB/s during a period of 14
hours with a negligible rate of failed transfers. Then, the
tests performed to access the data through the LHCb anal-
ysis software have given a promising result for the feasibil-
ity of data analysis activities in a realistic scenario, though
the number of simultaneous jobs was limited by the avail-
able CPU slots at CNAF. Finally, the study of the system in
heavy-duty run conditions showed that such an instance of
StoRM can sustain a load of 500 parallel processes provid-
ing a total rate of about 80 Hz of SRM interactions.

Our results show that StoRM can comfortably fulfill the
requirements of a HEP experiment like LHCb as a SRM
pure disk implementation.

Acknowledgements

We kindly acknowledge the INFN-CNAF staff for the
prompt support. We also wish to express our thanks to the
LHCb computing group and to the LCG GSSD group for
their interest and support to this work. The StoRM project
was born as a collaboration between INFN, funded by the
GRID.IT Project, and ICTP, funded by the EGRID Project.
We warmly acknowledge our colleagues from ICTP. At the
moment, the support, the maintenance and the development
of StoRM are made in the framework of EGEE-SAL.

References

[1] BeStMan: Berkeley Storage Manager.
datagrid.lbl.gov/bestman, July 2007.

[2] CASTOR: CERN Advanced STORage manager.
//castor.web.cern.ch/castor, July 2007.

[3] DaVinci: The LHCb Analysis Program . http://cern.
ch/LHCb-release-area/DOC/davinci, July 2007.

[4] DPM: LCG Disk Pool Manager. https:
//twiki.cern.ch/twiki/bin/view/LCG/
DpmAdminGuide, July 2007.

[5] The globus-url-copy tool. http://www.globus.org/
grid_software/data/globus-url-copy.php,
July 2007.

[6] GPFS: General Parallel File-System. http:
//publib.boulder.ibm.com/infocenter/
clresctr/vxrx/topic/com.ibm.cluster.
gpfs.doc/gpfsbooks.html, July 2007.

[7] GridFTP. http://www.globus.org/grid
software/data/gridftp.php, July 2007.

[8] HPSS: High Performance Storage System. http://www.
hpss-collaboration.org, July 2007.

[9] LFC: LCG File Catalog. https://twiki.cern.ch/
twiki/bin/view/LCG/LfcAdminGuide, July 2007.

[10] LHC: Large Hadron Collider. http://lhc.web.cern.
ch/1hc, July 2007.

http://

http:

(1]
(12]
[13]
(14]
[15]

[16]

(7]
(18]

(19]
[20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

LHCb Collaboration.
2007.

Lustre. http://www. lustre.org, July 2007.

The ROOT system. http://root.cern.ch, July 2007.
Scientific Linux CERN. http://linux.web.cern.
ch/1linux, July 2007.
SRM Working Group.
srm-wg, July 2007.

The Storage Resource Manager Interface Specification,
Version 2.2. http://sdm.1lbl.gov/srm-wg/doc/
SRM.v2.2.html, April 2007.
StoRM: Storage Resource Manager.
forge.cnaf.infn.it, July 2007.
XFS file-system. http://oss.sgi.com/projects/
xfs, July 2007.

EGRID project. http://www.egrid.it/, Jan 2006.
Lustre: A Scalable HighPerformance File System. Techni-
cal report, Cluster File Systems, Inc., Jan 2002.

LHCb Computing TDR. Technical Report CERN-LHCC-
2005-019, 2005.

R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello,
A. Frohner, K. Lérentey, and F. Spataro. From gridmap-file
to VOMS: managing authorization in a Grid environment.
Future Generation Comp. Syst., 21(4):549-558, 2005.

A. Caltroni, V. Ciaschini, A. Ferraro, A. Ghiselli, G. Rubini,
and R. Zappi. G-PBox: A Policy Framework for Grid Envi-
ronments. In Proceedings of the International CHEP 2004,
Interlaken, Switzerland, 2004.

E. Corso, S. Cozzini, A. Forti, A. Ghiselli, L. Magnoni,
A. Messina, A. Nobile, A. Terpin, V. Vagnoni, and R. Zappi.
StoRM: A SRM Solution on Disk Based Storage Sys-
tem. In Proceedings of the Cracow Grid Workshop 2006
(CGW2006), Cracow, Poland, October 15-18, 2006.

M. De Riese, P. Fuhrmann, T. Mkrtchyan, M. Ernst,
A. Kulyavtsev, V. Podstavkov, M. Radicke, M. Sharma,
M. Litvintsev, and T. Perelmutov. dCache, the Book. http:
/ /www.dcache.org/manuals/Book/, Nov 2006.

F. Schmuck and R. Haskin. GPFS: A Shared-Disk File Sys-
tem For Large Computing Clusters. FAST 02, pages 28-30,
January 2002.

A. Shoshani, A. Sim, and J. Gu. Storage Resource Man-
agers: Essential Components for the Grid. In J. w. Edited by
Jarek Nabrzyski, Jennifer M. Schopf, editor, Grid Resource
Management: State of the Art and Future Trends, number 1-
4020-7575-8, chapter 20, pages 321-340. Kluwer Academic
Publishers, Norwell, MA, USA, 2004.

http://lhcb.cern.ch, July

http://sdm.1lbl.gov/

http://storm.

