
STORM: GRID MIDDLEWARE FOR DISK RESOURCE MANAGEMENT

F. Donno, CERN, Geneva, Switzerland

A. Ghiselli, L. Magnoni, R. Zappi, CNAF, Bologna, Italy

Abstract
Within a Grid the possibility of managing storage
space offering POSIX access to disk is fundamental.
On the other hand, the increasing availability of high
performance computing resources raises the need for
fast and efficient I/O operations and drives the
development of parallel, distributed file systems.
Through StoRM (Storage Resource Manager) an end
user client can reserve and manage space on disk-based
storage systems. It can then access the space either in a
Grid environment or locally in a transparent way via
classic POSIX calls. The StoRM architecture is based
on a pluggable model that uses file-systems such as
GPFS or LUSTRE with an SRM interface. StoRM
includes quota management and a space guard, and
serves as policy enforcement point (PEP) for the Grid
Policy Management System over disk resources. In this
paper we describe the StoRM architecture and the
preliminary functional results obtained.

INTRODUCTION
Today’s data intensive applications demand large

storage systems capable of serving hundreds of
terabytes of storage space. The access to such a space
needs to be fast. Even though tape servers can provide
the desired capacity, they do not satisfy the
performance requirements. Therefore, they are used
essentially as tertiary data stores accessible through a
user transparent interface.

In order to achieve fast data access to large storage
resources, high performance I/O solutions based on
parallel file systems on very high-speed connections
(GPFS on Infiniband, etc.) are deployed for large
computer farms. Such solutions provide for POSIX
I/O, centralized management, load balancing,
monitoring, and fail-over capabilities, among others.

In the Grid community, there is a tendency to
provide disk pool managers capable of serving large
amounts of disk space distributed over several servers.
However, most of the time, such systems do not allow
for POSIX I/O, but file access is guaranteed via Grid or
specific protocols, sometimes with lower efficiency.
Moreover, users do not always have control over their
applications. Adopted proprietary solutions, legacy
software, performance factors, etc. often do not allow
for changing (re-writing) an application in order to
make it Grid-aware, i.e. use the provided protocols.

Before moving jobs, that generate large output files,
to Grid computing systems with available CPU
capacity, a Grid scheduler should check for availability

of the required space and then allocate it. Therefore,
the possibility to manage disk-space via the Grid
becomes essential for running data-intensive
applications on the Grid. Data movement and
replication are also important functions to guarantee
optimised access to files.

In the Grid environment the need for a
homogeneous, transparent interface to storage devices
has brought Grid scientists to the definition of the
Storage Resource Management (SRM) interface [1].
 In the following document we present StoRM, a disk-
based storage solution with an SRM interface that
allows applications to access files on a parallel file-
system directly via POSIX calls, whether scheduled via
Grid or only through the local batch system, in a
transparent way with the guarantee to find the required
disk space. StoRM is aware of local and Grid
application usage of the storage resources and reports
the information about space and allocation contention.

The integration of existing high performing, parallel
file-systems into a Grid infrastructure allows users to
take advantage of such technologies.

In what follows we present the details of the
proposed solution and a prototype implementation. We
also report on the tests executed, which include real
use-cases of applications running on the Grid today. In
the next section we discuss the functional requirements
imposed by the proposed system on a generic high-
performance distributed file-system and in particular
we focus on systems such as GPFS, GFS, LUSTRE
and PVFSv2. In the architecture section we give details
on the goals of our project and a technical description
of the design of the StoRM system. In the following
section we describe the implementation of the first
functional prototype. A discussion on SRM and our
implementation is given. Finally, related work and
conclusions follow.

FILESYSTEM REQUIREMENTS
In the following section we discuss the requirements

for a distributed file system eligible to satisfy the
demand coming from data intensive Grid applications.

A file-system should provide for:
• Uniform access to data – single-system image

or name space across a cluster.
• POSIX interface – no modifications for

applications.
• Full administrative API for file-system

management (space management, security,
administrative functions, etc.).

• High capacity – large files (10-50GB), 100TB
file-systems.

• High throughput – wide striping, large blocks,
many GB/s throughput.

• Reliability and fault-tolerance - node and disk
failures.

• Online centralised system management –
dynamic configuration and monitoring.

• Parallel data and metadata access – shared disks
and distributed locking.

• Space allocation at file level.
• Quota, meta-data and file lifetime management.
• Access Control Lists (ACLs).

File-systems such as NFS and AFS do not satisfy all

requirements above. Even though they are widely
used, they present quite a few performance and
scalability problems.

One interesting file-system that meets most of the
requirements stated above is the General Parallel File
System (GPFS) from IBM.

GPFS for Linux is a high-performance shared-disk
file-system that can provide data access from all nodes
in a Linux cluster environment. Parallel and serial
applications can access shared files using standard
UNIX file-system interfaces, and the same file can be
accessed concurrently from multiple nodes. GPFS
provides high availability through logging and
replication, and can be configured for fail-over from
both disk and server malfunctions.

To support its performance objectives, GPFS is
implemented using data striping across multiple disks
and multiple nodes, and it employs client-side data
caching. GPFS provides large block size options for
highly efficient I/O and has the ability to perform read-
ahead and write-behind file functions.

GPFS uses block level locking based on a
sophisticated token management system designed to
provide data consistency while allowing multiple
application nodes concurrent access to a file.

When hardware resource demands are high, GPFS
can find an available path to the data by using multiple,
independent paths to the same file data from anywhere
in the cluster.

Increasing the number of nodes and disks assigned to
support the I/O as the overall cluster configuration
grows provides scalability. A scalable interconnect,
such as the Myricom Myrinet™-2000, is generally
used to support this overall scaling.

Other systems that satisfy the requirements above are
PVFSv2, GFS, LUSTRE. However, we decided to
consider GPFS for our first prototype implementation
of StoRM as underlying file-system, given the
availability of installations at our sites.

THE STORM ARCHITECTURE
In this section we describe the motivations that have

brought us to the current design of StoRM together

with the goals and objectives that we intend to achieve.
Then, a general architecture overview of the system is
given.

Motivations and Goals
The StoRM project has started with the attempt to

provide an answer to a set of requests coming from
various applications to have transparent access to
storage systems from both a Grid and a local
environment while providing access to high-
performance, modern parallel file systems. In current
Grid infrastructures, such as LCG-2, native POSIX
access over the LAN to storage resources is not
enabled because of the missing storage management
capabilities offered by current file-systems such as
NFS or AFS. Only Grid-enabled file access libraries
are therefore in use, such as the Grid File Access
Library (GFAL). Users require not to be forced to
modify their code in order to be Grid-aware.

Among others, StoRM allows applications to
perform the following operations:
• Reserve disk space
• Query space status
• Monitor free space
• Enforce space policies
• Allow for disk quota
• Manage object attributes such as file types,

ownership, lifetime, etc.
• Advance reservation

Overview
 StoRM is an “OGSA-oriented” web service that

interacts with resource reservation and storage space
management services provided by the underlying file-
systems, as pointed out in the previous sections. It
offers a virtualisation over several file-system
implementations. The present design of the storage
resource system provides for a layered model to
increase flexibility and maintainability. This approach
has allowed us to identify three separate types of
functions that a Grid-aware storage manager service
has to provide:
• Data transfer: In order to support data

exchange between local and remote Grid sites, a
Grid storage manager system has to support file
transfer protocols such as the existing GridFTP.
StoRM can easily be extended to support new
protocols that might appear.

• Core functionalities: StoRM provides users
with multiple functionalities such as a
translation service for different namespaces, file
staging into tertiary storage if available, space
reservation, fine-grained access control,
pinning, etc.

• Metadata and Information: the system has
built-in information providers’ capabilities that
allow for publishing of a variety of meta-data
information such as service URL, status, etc.

Figure 1: Access to data files via local calls or via Grid

SRM with StoRM

Here, we give more details about the core
functionalities provided by StoRM.

The SRM protocol seems to gain acceptance in the
Grid community and become a standard for storage
access. Given the need for an application to efficiently
access data and possibly not to change its I/O interface,
we decided to provide users with an extended SRM
compliant interface that also offers a POSIX interface.
Figure 1 shows space reservation and file access
locally and via Grid. A local application can create files
locally via POSIX calls. The space used by such an
application is monitored by the StoRM service. A Grid
application that is running locally can as well create
and access files using multiple protocols such as rfio,
dcap, and chirp. The SRM interface can hide the details
of the underlying storage system (Castor, dCache, Nest,
GPFS, etc.). Other native file-system calls can be used
as well by the application.

The StoRM prototype includes space reservation
functionalities that complement SRM space reservation
to allow applications to directly access/use the
managed space through POSIX calls. Once a space
reservation request arrives, the server returns a URL
with a SpaceToken that contains a <path>/<filename>
string that can be directly used by applications
requiring POSIX access.

Moreover, StoRM includes quota management and a
space guard. StoRM acts as policy enforcement point
(PEP) for the Grid Policy Management System over
disk resources.

Furthermore, clients can choose among several file
access libraries that best fit their application to access
the data served by StoRM: i.e. gfal, rfio, etc.

System Architecture
The StoRM architecture is based on a pluggable

model in order to easily add new functionalities. The
StoRM implementation uses modern file-systems such
as GPFS or LUSTRE.

The main StoRM components are shown in Figure 2
and outlined below.
Request Manager – It manages StoRM requests,
verifying request permission (policy enforcement) and
forwarding the request to the appropriate module. The
Request Manager handles client connections for SRM
calls.

Figure 2: The StoRM architecture

Policy Manager - This module provides a GSI-based
authentication and authorization mechanism for
incoming requests, enforcing either local or VO
specific policies.
Metadata Catalog – This catalogue module is used by
StoRM to store internal status and data management
information such as space availability and files. The
module is a plug-in and allows for different kinds of
database back-ends, from simple text based files to
relational databases such as Oracle.
Space Manager - This module offers functionality for
space reservation. It exposes only a storage-
independent general interface. Other dedicated
modules, such as the Space Allocator, implement
device dependent functions. It manages data in the
Metadata Catalog, and returns important information
about storage status and space reserved.
File Manager - This module handles requests for
garbage collection, pinning, locking and space/file
lifetime.
Space Allocator - This module is the first low-level
module. Its task is to satisfy requests for space
allocation in the low-level storage system. Therefore,
this module must be properly realized for every
underlying file-system used (POSIX file-system,
GPFS, etc.). In our case it includes the GPFS
Wrapper.
Listener - This is another low-level module. Its role is
to create information about state of the physical storage
system, such as free space or file size.

Here we describe how the various modules interact.
A Grid application invokes the SRM v2.1 function
submit_srmReserveSpace to reserve disk space for
output. The request goes to the StoRM Request
Manager that then invokes StoRM Space Manager. It
is the responsibility of this module to analyse the
physical path specified in the request and, if not
explicitly defined, to define it as a function of the VO
or request ID. The File Manager is then invoked to
interact with the underlying storage system to verify
the available space, the directory existence, permission
management, etc. All this is done through POSIX
calls. Finally, StoRM’s Space Allocator interface

spaceAlloc(size Bytes, string Path) is invoked. It
analyses the file-system type where the space will be
reserved and invokes the write file-system wrapper
module. The client can then use the file path specified
or returned to create the new file.

StoRM will constantly monitor the underlying file-
system that can be used natively by client applications
in order to always report space usage statistics
coherently.

The Policy Box (PBox) is an external service for the
definition and the management of Grid policies (see
Figure 3). Policies concern authorization, priority,
management, etc. PBox has a hierarchical, distributed
architecture. Every instance includes a PDP (Policy
Decision Point) called by the resource wrappers in
charge of enforcing policies. A resource usage requests
arrives to the Policy Enforcement Point (PEP) that
translates it into a request for the PBox. The PBox
gives an answer (for authorization, priority, obligation,
etc.) that the PEP can interpret and enforce.

In our case, StoRM acts as PEP for space
management requests. The policies that PBox can
process for storage services concern: maximum
number of files, quota management, access to the
service, etc.

Figure 3: The PBox system

IMPLEMENTATION
The first implementation of StoRM includes

functionalities of space allocation and reservation
while file transfer capabilities, already existing in other
SRM implementations, will follow soon. In particular,
only the modules shown as light boxes in Figure 2 have
been implemented in our first prototype.

The StoRM server is multithreaded. It has been
implemented using AXIS SOAP. The Request Manager
module has been written in Java while the Space
Manager, Space Allocator and GPFSWrapper are
written in C++ (because of the C++ APIs available in
GPFS) and connected via JNI to the Java generic Space
Manager module. The GPFS Wrapper module has
been realized using mainly the gpfs_prealloc() GPFS
API. This function is used to pre-allocate disk storage

for a file that has already been opened, prior to writing
data to it. The pre-allocation of disk space for a file
provides an efficient method for allocating storage
without having to write any data. This can result in
faster I/O compared to a file that gains disk space
incrementally as it grows. Existing data in the file will
not be modified.

We have performed preliminary functional tests with
good results using two testbeds, one located at
CINECA in Bologna where GPFS is used in
production, and one located at CNAF in Bologna
constituted of 2 PCs with a distributed GPFS file-
system of about 38GB.

SIMILARITIES AND DIFFERENCES
WITH SRM

StoRM implements a subset of the functionalities
specified by SRM v2.1. The compatibility with such an
interface is semantic but not syntactic. In fact, we
changed the binding names and we used 5 different
ports. The SpaceToken defined by SRM is not just a
string but it must contain <path>/<file> to allow for
native POSIX access to a file.

CONCLUSIONS
We presented our proposed solution of an SRM

enabled Storage Resource Manager that enables native
POSIX access to files providing access to high
performance parallel file-systems. Other SRM
implementations are available. Among others we have
to mention d-Cache and Castor SRM. However, they
implement at the moment SRM v1.1 and do not allow
for space allocation and POSIX access to files but
force users to use specific protocols.

ACKNOWLEDGEMENTS
This work has been funded by INFNGRID Grid.it

project. We acknowledge the people in CINECA
Bologna and INFN-Catania for their support.

REFERENCES
[1] The SRM Interface Specification
http://sdm.lbl.gov/srm-wg/doc/SRM.spec.v2.1.final.pdf
[2] F.Schmuck, R.Haskin, GPFS: A Shared-Disk File

System For Large Computing Clusters, FAST’02,
28-30 January 2002, Monterey, CA .

[3] The Storage Resource Management Working
Group: http://sdm.lbl.gov/srm-wg, 2004.

[4] GLUE Schema for the Storage Element, V1.1,
http://www.cnaf.infn.it/~sergio/datatag/glue/v11,
2003.

[5] A. Caltroni, V. Ciaschini, A. Ferraro, A. Ghiselli,
G. Rubini, R. Zappi ,G-PBox: A Policy
Framework for Grid Environments, Chep 2004, 26
Sept – 1 Oct 2004, Interlaken, Switzerland.

	STORM: GRID MIDDLEWARE FOR DISK RESOURCE MANAGEMENT
	INTRODUCTION
	FILESYSTEM REQUIREMENTS
	THE STORM ARCHITECTURE
	Motivations and Goals
	Overview
	System Architecture

	IMPLEMENTATION
	SIMILARITIES AND DIFFERENCES WITH SRM
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

