
StoRM: status report

A disk based SRM 2.1.1 server

StoRM: status report
Result of collaboration between:

INFN - Grid.IT Project from the Physics
community

+
ICTP - EGRID Project: to build a pilot

national grid facility for research in Economics
and Finance (www.egrid.it)

StoRM: status report

Summary:
Objectives to achieve
Implementation strategies
SRM v2.1.1 functionality currently available
Release process
Simple use cases

I. Objectives to achieve

StoRM objectives

StoRM’s implementation of SRM 2.1.1 meant
to meet three important requirements from
Physics community:

Large volumes of data exasperating disk
resources: Space Reservation is paramount.
Boosted performance for data management:
direct POSIX I/O call.
Security on data as expressed by VOMS: strategic
integration with VOMS proxies.

StoRM objectives
EGRID Requirements:

Data comes from Stock Exchanges: very strict legally
binding disclosure policies. POSIX-like ACL access from
grid environment.
Promiscuous file access: existing file organisation on disk
seamlessly available from the grid + files entering from the
grid must blend seamlessly with existing file organisation.
Very challenging – probably only partly achievable!

StoRM: disk based storage resource manager…
allows for controlled access to files – major
opportunity for low level intervention during
implementation.

II. Implementation strategies

StoRM implementation:
behind SRM v2.1.1

VOMS/Security
ACLs on disk’s filesystem seen as natural mechanism for
enforcement
StoRM requires ACL capable filesystem (ext3, RaiserFS,
GPFS, …)
Physics community access patterns set at the beginning:
natural to partition access rights into blocks of special local-
users which grid credentials get mapped to.
ACLs tend to be set up earlier on: Ahead Of Time approach.
Easily supports present day naïve file access based on VO
membership.

StoRM implementation:
behind SRM v2.1.1

Boosted POSIX I/O
Performant parallel filesystem distributed
over all WNs of farm: GPFS, Lustre, …
StoRM’s SRM logic decoupled from specific
filesystem chosen: requires only to
write/use specific filesystem module.

StoRM implementation:
behind SRM v2.1.1

Filesystem with native support for
space reservation (GPFS, …)

Native support offers high robustness as
no metadata catalogue is used: no need
for critical synchronisation with underlying
filesystem state.

StoRM implementation:
behind SRM v2.1.1
Important feature to meet EGRID requirements:

support for JustInTime approach to ACL
set-up.
ACLs absent on filesystem; applied on the fly
for the particular pool account user to whom
grid credentials get mapped; removed once
data management completes.
No need for initial partitioning of local Unix
accounts based on required access rights.
Tackles head on scalability issue on security
+ aids in promiscuous file access.

III. SRM v2.1.1 functionality currently available

StoRM’s SRM v2.1.1
functionality

Presently available:
srmPrepareToGet
srmPrepareToPut
srmCopy in Push Mode
srmReserveSpace + supporting functionality
srmXXXRequestStatus
Volatile + Permanent file storage type
SRM clients
Simple access rights

StoRM’s SRM v2.1.1
functionality

Within the next couple of weeks:
srmLs
srmCopy in Pull Mode
Finish off sorting out of security issues
between StoRM’s different tiers of
architecture

IV. Release process

StoRM’s release process

Development machine at CNAF where
new features are tested, debugged and
integrated.
Since June there is an expanded co-
operation with CNAF: testbed of several
machines with GPFS – functionality test
of all features listed before

StoRM’s release process

By second half of November there will
be official release to select users

V. Simple use cases

StoRM simple use case
scenarios

Use case 1: POSIX I/O usage
StoRM presides over files on a SE: GPFS
Filesystem spread over all WN. Access to data is
granted simply on VO membership basis.
Grid user submits job; job reaches WN; job first
executes SRM client for getting the file directly.
StoRM verifies grid user has right permissions;
StoRM returns a TURL with file handle; if StoRM is
using JiT: it sets up an ACL for local user to which
grid credential is being mapped.
Job processes the file. If JiT: StoRM removes ACL
when job finishes.

StoRM simple use case
scenarios

Use Case 2: moving large dataset from
source StoRM to destination StoRM (generally
applies to all SRM servers)

SRM client issues srmReserveSpace on destination
StoRM; destination StoRM checks requesting user
has permissions; destination StoRM returns
SpaceToken.
SRM client issues srmCopy to source StoRM for
pushing data set to destination StoRM, given
space token.
Source StoRM checks permissions + negotiates
with destination server a GSIFTP transfer.

StoRM simple use case
scenarios

Use case 3: computing centre wishes to join
an existing grid infrastructure; no/little impact
on users’ organisation of files – users
continue to organise files as they have always
done.

Centre’s user submits job to the grid; output file
gets saved on centre’s StoRM SE.
Another centre’s user wishes to perform local
computation on newly created file: user has no
need to be aware of special arrangements for data
produced from the grid.

Acknowledgements

On going technical partnership with
J.P.Baud of DPM
StoRM team: Alessio Terpin, Ezio Corso,
Flavia Donno, Heinz Stockinger, Luca
Magnoni, Riccardo Murri, Riccardo
Zappi. Project leader: Antonia Ghiselli.

