
StoRM
disk management middleware

CHEP 2004, Interlaken

27th September 2004

Flavia Donno, INFN
Antonia Ghiselli, CNAF-INFN
Luca Magnoni, CNAF-INFN
Riccardo Zappi, CNAF-INFN

Problem statement (1/3)

Storage System
• For applications that are disk-intensive,

particular attention should be paid to
storage resources, such as those
providing higher capacity,
redundancy, scalability, etc..

• More than decent performance are
required to access your data.

Problem statement (2/3)

Space Reservation

• In a storage system, we can identify two kinds

of resources : file and space.

• It often authorized users on storage acts as

concurrent consumer of storage resources.

• Concurrent consuming of storage resources

may cause jobs failure, specially if there is no

certainty of space availability.

Problem statement (3/3)

Direct access

• Data-intensive jobs want direct access on

reserved space with good I/O performance.

• Some data-intensive job might not be able to

be adapted to use reserved space through an

“external” space management application

(backward compatibility).

Requirements (1/2)

• Storage

• Efficient I/O

• Capacity, Fault-tolerance

• Space Management

• Space reservation

• Direct access to reserved space

• Management policies

Storage : Efficient I/O

Solution: Parallel File System

• An example of Parallel FS.

Logical File

POSIX I/O
read()

write()

open()

close()

…

Storage : Scalability, Fault recovery, ..

Solution: GPFS

•The following requirements:

•Scalability

•Large files/file-systems

•Security

•Failure Recovery

are satisfied by modern parallel file
system as GPFS.

Requirements (2/2)

• Storage

• Efficient I/O

• Capacity, Fault-tolerance

• Space Management

• Space reservation

• Direct access to reserved space

• Management policies

Space Management : Interface

• In SRM v2.1 advanced specification there are some
new functionalities regarding space management :

srmReserveSpace()
srmReleaseSpace()
srmUpdateSpace()

srmCompactSpace()
...

we have adopted SRM definitions to preserve
compatibility with any Space Management Client
that is SRM-compliant.

Space Management : Direct access

In order to enable applications for posix
access to the reserved space in a storage,
we consider a <path>/<file-name> as a part
of spaceToken.

path ::= [root] [relative-path]

root ::= [root-directory]

root-directory ::= "/"

relative-path ::= path-element { "/" path-element } ["/"]

path-element ::= name | parent-directory | directory-placeholder

name ::= char { char }

directory-placeholder ::= "."

parent-directory ::= "..“

Assembling all the pieces: StoRM

• Storage Resource Manager

• StoRM goal is to create a container for
storage management functionalities as:

• Space reservation (SRM-compliant)

• Other SRM functionalities.

• Management policy enforcement on

storage (G-Pbox provided by INFN).

Architecture : access to StoRM.

Architecture : StoRM Server

Management
Request

Use scenario : Use of reserved space

Prototype status and future plan

• Prototype of StoRM implementing
reserve-space functionality exists.

• Next steps :

• Testing of all functionalities defined in SRM

advanced involving Space Management.

• Integration with other Storage

Management Client SRM-Compliant (SRM

File Transfer functionalities).

Conclusion

• We have presented StoRM, a solution
that fulfils the requirements about space
management and I/O performance in
disk-intensive Grid applications.

• StoRM prototype have shown how to
create and use reserved space in
efficient mode.

• There is a lot of work to do, but we are
confident in a success.

End

• Project references can be found at
INFNForge :

http://infnforge.cnaf.infn.it

