STORM, AN SRM IMPLEMENTATION FOR LHC ANALYSIS FARMS

E. Corso!,S. Cozzini%,F. Donno?,A. Ghiselli*,L. Magnoni*, M.Mazzucato?,
R. Murri!,P.P. Ricci*,H. Stockinger®,A. Terpin®, V. Vagnoni®,R. Zappi*
1) The Abdus Salam ICTP, Trieste, Italy - 2) CNR-INFM Democritos, Trieste, Italy
3) INEN, Pisa, Italy and CERN, Geneve, Switzerland - 4) INFN/CNAF, Bologna, Italy
5) University of Vienna, Vienna, Austria - 6) INFN, Bologna, Italy

Abstract

In production grids, high performance disk storage solu-
tions using parallel file systems are becoming increasingly
important to provide reliability and high speed I/O opera-
tions needed by HEP analysis farms. Today, Storage Area
Network solutions are commonly deployed at LHC center
and and parallel file systems such as GPFS and Lustre al-
low for reliable, high-speed native POSIX I/O operations
in parallel fashion.

In this article we describe the status of the StoRM
project, an implementation of the Storage Resource Man-
ager (SRM) standard interface version 2.1.1 for disk based
storage solutions. StoRM is designed to work over native
parallel filesystems, provides for space reservation capabil-
ities and uses native high performing POSIX I/O calls for
file access. StoRM takes advantage of ACL support pro-
vided by the underlying filesystem to implements the secu-
rity model.

StoRM is also designed to cater for the interests of Eco-
nomics and Finace as represented by the EGRID Project,
given that security is an important driving requirement.

We report on the tests performed on a dedicated test bed
to prove basic functionality and scalability of the system to-
gether with GPFS performance on write and read operation
from multiple nodes.

INTRODUCTION

LHC [1] analysis farms - present at sites collaborating
with LHC experiments - have been used in the past for
analyzing data coming from an experiment’s production
center. With time such facilities were provided with high
performance storage solutions in order to respond to the
demand for big capacity and fast processing capabilities.
With the advent of Grid technologies, existing LHC anal-
ysis facilities have to face the problem of adapting current
installations with Grid requirements to allow users to run
their applications both locally and from the Grid in order
to provide efficient usage of the resources.

Parallel file systems deployed on Storage Area Network
(SAN) are capable to serve multi-terabyte storage, offer-
ing a scalable, high performance system with reliability in
case of disk failures, and with the possibility of great per-
formance on multiple access on files from different nodes.
Filesystem such as GPFS [2] and Lustre [3] with such char-
acteristic inside a grid environment allow for reliable, high-
speed native POSIX I/O [4] operations.

The need to provide grid applications with consistent

and efficient wide-area access to heterogeneous storage
resources drives to use the Storage Resource Manager
(SRM) [5] interface as the common standard for storage
management. As of today SRM implementations exist for
storage managers such as Castor, d-Cache and LCG DPM.
However, such solutions manage the entire storage space
allocated to them and force applications to use custom file
access protocols such as rfio and d-cap, sometimes penaliz-
ing performance and requiring changes in the application.

StoRM [6] is a disk-based storage resource manager that
implements SRM interface v.2.1.1. It is designed to work
over native parallel filesystems or with standard POSIX
filesystem, providing space reservation capabilities and al-
lowing to use native high performing POSIX I/O calls for
file access.

Moreover StoRM is also designed to cater for the inter-
ests of Economics and Finace as represented by the EGRID
Project, given that security is an important driving require-
ment.

StoRM takes advantage of ACL support provided by the
underlying filesystem to implements the security model.

In this article, we describe the StoRM project and the
features provided by the current release. We report on
the tests performed on a dedicated test bed to prove basic
functionality and scalability of StoRM together with GPFS
performance in standard POSIX operation from multiple
nodes.

STORM SERVICE

Architecture

Parallel file systems offer high scalability and high avail-
ability by allowing multiple servers and multiple disks to
serve the same file system, providing to application a sin-
gle view of a unique file system.

StoRM (acronym for Storage Resource Manager) is an
SRM server that provides functionalities for space and file
management of disk based storage systems. The current re-
lease of StoRM provides a subset of the SRM v2.1.1 func-
tionalities:

e Data transfer: srmPrepareToPut(), srmPrepareTo-
Get(), smrCopy(), srmStatus*(), srmPutDone().

e Space management:
MetaDataSpace().

srmReserveSpace(), srmGet-

e Directory management: srmLs() with recursive op-
tion, srmRm(), srmRmdir(), srmMKkDir().

StoRM service

GSI I
overI))
HTTP |
| BackEnd
| ;-] //'
o J
| = y
| peduest | | Gl |
) —
1 / GPFS

Figure 1: StoRM Architecture

The StoRM architecture can be identified by two main
tiers named Front-End and Back-End:

e Front-End (FE) exposes the service interface. It re-
ceives client requests, manages the client communica-
tion, and forwards a processed structure to server.

e Back-End (BE) is the core of StoRM. It processes
the requests, executes necessary tasks to perform op-
erations concerning security, metadata, space and file
management and returns the result to the client.

In order to provide access to different filesystem, StoRM
makes use of wrappers, called by the Back-End. These
wrapper also hide the complexity of filesystem specific
functions. However, StoRM takes also advantage of spe-
cial features provided by underlying filesystems like ACL
support, and block pre-allocation.

From the beginning of the StoRM project a particular
attention has been given to the space reservation function-
ality. Using file systems specific features, such as the block
pre-allocation available in GPFS, StoRM is able to provide
a guaranteed space reservation to application, allocating
empty block which will be used for write data.

The current release of StoRM allows to use two kinds
of protocols: gsiftp and file. Support for the file proto-
col allows applications to perform a standard POSIX op-
eration (returning a special URL) without interacting with
any external service that emulates data access, improving
performance, when the underlying file system is efficient.
Therefore, an application executed on a grid system can be
adapted without any change in data access pattern.

Service configuration

For a grid site the possibility of configuring a stor-
age management system in specific way is fundamental.
StoRM provides an easy way to configure parameters re-
garding both the SRM interface and StoRM’s internal fea-
tures, allowing to create an ad-hoc installation for any site.
StoRM can be easy configured to manage file namespace
within a VO domain (at the site level) by editing a single

configuration file. Many other specific parameters regard-
ing technical behavior can be set up to tune the service in
behavior and performance.

Status

At the end of November 20035, a first alpha release of
StoRM was released for a functionality test. Moreover, a
web site was established describing the StoRM project [7]
containing documentation and a user guide. The StoRM
site supports user management, so it is possible download
service RPMs previous to site subscription. The mecha-
nism of registration was chosen to allow an efficient sup-
port of small groups of a selected certification team. Cur-
rently, an improved version is available to download. De-
velop and bug fixing are on-going as well as the improve-
ment of the documentation. The current distribution of
StoRM includes simple command line clients to test the
service.

SECURITY MODEL

General aspects

There are several storage security issues: data integrity,
confidentiality, authentication, non-repudiation and autho-
rization are only some examples. Authorized access on
storage resource, such as file and represents only the first
step to provide a minimal security context. Anyway, the
physical file on storage represents the final target of princi-
pal.

Secure access to a physical file in grid context involves
many steps. Firstly, the principal has to own a valid iden-
tity defined within a virtual organization. She has to be
authorized to query file catalogs in order to retrieve logi-
cal file names (LFNs) and Storage URLs (SURLs). Both
are terms clearly defined in the SRM standard. The knowl-
edge of SURL allows pointing to the right storage and the
SRM service that holds and manages it. The principal has
to be authorized to access SRM service to obtain the TURL
pointer.

Authorization policies are metadata bound with SURLSs,
live within catalogs affiliated with the VO domain. The
LHC File Catalog (LFC) is one example, but other cata-
logs can also be used. Moreover, security subjects within
authorization policies are in terms of grid identities.

Enforcing of permission on a physical file completes the
entire security access scenario. Several security aspects be-
long to the virtual organization domain while others be-
longs to the site administrative domain. Principal identity
definition, secure catalogs access and service authorization
policies definition belong to the VO domain. Subject au-
thentication, service authorization, and enforcing of access
authorization policies on physical file belong to site do-
main. Every aspect must be taken into account at different
levels and virtual organizations to build an effective secure
context.

StoRM security model

The security model adopted by StoRM is qualitative, i.e.
it permits or denies the access (intended to perform what-
ever action) to a particular resource (i.e. StoRM service,
single file or directory and space). StoRM security acts at
site level, in particular regarding authorization to storage
The authorization model adopted by StoRM is addressed
to allow local access to storage resource in secured fash-
ion. StoRM utilizes a security mechanism in two levels as
documented in the following paragraphs:

First level. Authorization is based on subject authenti-
cation. StoRM uses the Grid Security Infrastructure (GSI)
for authentications. Some FQANs (short form for Fully
Qualified Attribute Name) could be present within X.509
proxy certificates, as defined by the Virtual Organization
Membership Service (VOMS) [8].

The first level engages the StoRM service itself as re-
source, and the possible actions on the StoRM resource are
exactly the SRM function exposed. This first level relies on
external authorization service. It is planned to integrate the
Front End of the StoRM service with an external authoriza-
tion service, like G-PBox [9].In this pattern G-PBox acts
as policy decision point and StoRM acts as policy enforce-
ment point. It is possible define authorization policy based
on subject attribute (VOMS attributes are welcome) and us-
age metrics. In this way is possible to prevent unauthorized
requests.

The information of an entity provided by VOMS at-
tributes is not used actively within Front End layer to
make authorization decisions about service utilization. Ev-
ery attributes about principal is sent to Back End tier for
checking authorization on file resources and management
of namespace translation.

Second level. The StoRM security mechanism refers
to an external metadata catalog as authorization source. Ev-
ery authorization source is queried with a specified order,
and the results are collected by StoRM with a deny override
algorithm fashion. Authorization policies on file and space
live on external catalogs, like the LHC File Catalog (LFC)
or others. Authorization policies collected by StoRM are
expressed in terms of grid identities and SURLSs.

StoRM takes advantages of the security mechanism pro-
vided by the underlying file system to enforce permissions.
StoRM sets up ACLs on the physical file to allow direct ac-
cess from a worker node. The access control restriction to
storage resources is based on mapping from grid identities
to local user IDs, and on definition of ACLs. The grid iden-
tities mapping is accomplished by a call out to LCMAPS.

There are two way to define ACL on files. The Just in
Time (JiT) model defines and enforce access control entries
when access request is done while the Ahead of Time (AoT)
model defines and enforces access control entries (ACEs)
when authorization policies are defined. In the JiT model
an ACL is removed when access is terminated or when life

time of access policy is expired. In the AoT model the ACE
is removed when authorization policies expires.

Simple access use case

The figure below shows a typical scenario of data access
in a site with StoRM and a disk based storage system. The
principal requires an SRM operation (e.g. SrmPrepareTo-
Get), to obtain the file pinned and ready to be accessed.
A validity check of the proxy certificate (held by the re-
quester) occurs within the Front End. User attributes are
used to delegate the external policy decision point (PDP,
like a G-PBox) to validate the Principal attributes are sent
to the Back End layer to complete request. Then, StoRM
queries LCMAPS to obtain a local user corresponding to
the grid identity of the requester. The physical name is de-
rived by an SURL and user attributes (Virtual organization
space).

The file system wrapper enforces permissions manag-
ing the ACL on the physical file using the JiT or the AoT
model depending on user attributes and the configuration
of StoRM. Finally, the user job can be executed into the
worker node of a specific computing element. The end
user application can perform a POSIX call to access the
into/from the storage system.

TEST BED AND RESULTS

Test bed architecture

In this paragraph we present the hardware environment
that has been used in the next test phase. We decided to
use the hardware that will be used in production at our tier
1 center in Italy since the main idea is develop an high
performance system that can be used in realistic activity
phases of HEP experiments where critical performance on
I/0 bandwidth are required. In figure 2 we summarize the
main parts of our hardware test bed.

The GPFS cluster employed as storage test bed is real-
ized with the architecture described below. The disk stor-
age (lower part of the figure) is composed by roughly 40
TBs. It is provided by 20 logical partitions of one dedi-
cated StorageTEK FLexLine FLX680 disk array storage,
aggregated by GPFS (version 2.3.0-10).

The FLX680 contains 96 blade units composed of 2 in-
terconnected 250 GB drives. We created the 20 logical
partitions using RAID 5 over 9 disks for the best perfor-
mance/reliability ratio. The 2 Fibre Channel (FC) redun-
dant controllers are connected using four 2 Gbps to our
central Fabric Director FC Switch Brocade 24000 on 4 dif-
ferent hot-swappable switching modules for the best avail-
ability. As disk-server we decided to use 4 high perfor-
mance Sun Microsystems SunFire V20Z servers with dual
Opteron 2.6 GHz, 4 GB RAM and RAID 1 over the 2 x
74 GB SCSI system disks. The 4 servers are connected
to the FC Switch through 2 Qlogic 2340 2 Gbps FC Host
Bus Adapter (HBA) on 2 different switching modules. The

1%}

XN E QL 4 E
5 6 RS 35 ¢ 1 |
S sk S L L
AN I ! 2 : { N ﬁ\ u}l\» il W“/\JW;‘.\A‘{
4 el oo Sl b, ok I W ARl
5 [T 2 ¢ » |

2F 1’? *

1 0.5 -
O SRR N EEE S 0 E. I W)

0

E L PP IR B
0 25 50 75 lOOS 25 50 75 100;

Figure 2: Test results: Read throughput and write through-
put

Qlogic SANsurfer software tool has been used to fully im-
plement fail-over paths over the disk storage to give the
maximum availability in case of major failures of each
component of the system (HBA, switching module, disk
storage controllers), and a hardware problem on each com-
ponent has been simulated during effective I/O on the logi-
cal partition for testing the fail-over and recover capabil-
ity of the system. The 4 servers are connected through
on-board Gigabit Ethernet interfaces to one central Giga-
bit switch with 4 uplink to our tier 1 central router giving
a theoretical 4 Gbps Ethernet bandwidth to the disk server.
The disk servers run GridFTP daemons as well to provide
an external access to the file system.

Tests results

We have done extensive performance tests on the stor-
age system described above. A short snapshot is presented
here:

e Write test srmPrepareToPut() with implicit reserveS-
pace of 1 GB files. globus-url-copy from local source
to the returned TURL. 80 simultaneous client pro-
cesses.

e Read test srmPrepareToGet() followed by globus-url-
copy from the returned TURL to a local file (1 GB
files). 80 simultaneous client processes.

The two tests are meant to validate the functionality and
robustness of the srmPrepareToPut() and srmPrepareTo-
Get() functions provided by StoRM, as well as to measure
the read and write throughput of the underlying GPFS file
system. We have recorded on our testbed sustained read
and write throughput of about 4 Gbps and 3 Gbps, respec-
tively.

CONCLUSION

StoRM is designed with the aim of answering to a set of
requests coming from various applications to allow direct
POSIX file system access to files in local environment with
high performance. In grid site modern parallel file systems
like GPFS and Lustre on disk pool provide high scalability

and reliability with great performance. A parallel file sys-
tem together with StoRM as storage resource manager cre-
ate a grid environment in which applications can perform
access on shared storage resource without interact with any
I/0O service.

The StoRM server runs on top of any POSIX file system
on Linux or UNIX, but can take advantage of the special
features of the underlying file system (e.g. GPFS add-ons).
StoRM allows data transfer functions, directory manage-
ment functions and explicit space reservation with native
POSIX access to files. The StoRM security model allows
either grid access and local access comply with grid secu-
rity requirements.

Our performance tests have show that StoRM provides a
satisfactory throughput for demanding application scenar-
ios. The development is on-going and early end-users are
integrated in the software development cycle to improve
both, the functionally as well as the performance of the sys-
tem.

ACKNOWLEDGEMENTS

StoRM design and developing result from a collabora-
tion between the INFN-CNAF in grid.IT Project, and the
Abdus Salam ICTP in EGRID Project for Economics and
Finance research.

Many thanks to INFN-CNAF Tier 1 for support and
availability of storage infrastructure. Moreover, we ac-
knowledge the people in INFN-Bari for their support.

REFERENCES

[1] The Large Hadron Collider. http://lcg.web.cern.ch/LCG,
2006.

[2] F. Schmuck, R. Haskin, GPFS: A Shared-Disk File System
For Large Computing Clusters, FAST 02, Monterey, CA, 28-
30 January 2002.

[3] Lustre filesystem, http://www.lustre.org/, 2006.

[4] ISO/IEC 9945-1:1996 (IEEE Std 1003.1, 1996 Edition), In-
formation Technology - Portable Operating System Interface
(POSIX).

[5] Storage Resource = Management
http://sdm.Ibl.gov/srm-wg, 2004.

[6] F. Donno, A. Ghiselli, L. Magnoni, R. Zappi. StoRM: Grid
Middleware for Disk Resource Management. Chep 2004, In-
terlaken, Switzerland, 26 Sept -1 Oct 2004.

[7] StoRM project. http://grid-it.cnaf.infn.it/storm, 2006

[8] V. Ciaschini, A. Frohner. VOMS Credential Format.
http://edgwp2.web.cern.ch/edg-wp2/security/voms/edg-
voms-credential.pdf

[9] G-PBox, http://infnforge.cnaf.infn.it/projects/pbox/, 2006.

Working Group.

